4(b). Surface Integrals

A surface integral is an expression of the form

$$
\int_{S} \vec{A} \cdot d \vec{a}
$$

where \vec{A} is again some vector function, and $d \vec{a}$ is an infinitesimal patch of area, with direction perpendicular to the surface(as shown in figure).

There are, of course, two directions perpendicular to any surface, so the sign of a surface integral is intrinsically ambiguous. If the surface is closed then "outward" is positive, but for open surfaces it's arbitrary.
If \vec{A} describes the flow of a fluid (mass per unit area per unit time), then $\int \vec{A} \cdot d \vec{a}$ represents the total mass per unit time passing through the surface-hence the alternative name, "flux."

Ordinarily, the value of a surface integral depends on the particular surface chosen, but there is a special class of vector functions for which it is independent of the surface, and is determined entirely by the boundary line.

Example:

Calculate the surface integral of $\vec{A}=2 x z \hat{x}+(x+2) \hat{y}+y\left(z^{2}-3\right) \hat{z}$ over five sides (excluding the bottom) of the cubical box (side 2) as shown in figure. Let "upward and outward" be the positive direction, as indicated by the arrows.

Solution:

Taking the sides one at a time:
(i) $x=2, d \vec{a}=d y d z \hat{x}, \vec{A} \cdot d \vec{a}=2 x z d y d z=4 z d y d z$,
so $\int \vec{A} \cdot d \vec{a}=4 \int_{0}^{2} d y \int_{0}^{2} z d z=16$.
(ii) $x=0, d \vec{a}=-d y d z \hat{x}, \vec{A} \cdot d \vec{a}=-2 x z d y d z=0$,
so $\int \vec{A} \cdot d \vec{a}=0$.

(iii) $y=2, d \vec{a}=d x d z \hat{y}, \vec{A} \cdot d \vec{a}=(x+2) d x d z$, so $\int \vec{A} \cdot d \vec{a}=\int_{0}^{2}(x+2) d x \int_{0}^{2} d z=12$.
(iv) $y=0, d \vec{a}=-d x d z \hat{y}, \vec{A} \cdot d \vec{a}=-(x+2) d x d z$, so $\int \vec{A} \cdot d \vec{a}=-\int_{0}^{2}(x+2) d x \int_{0}^{2} d z=-12$.
(v) $z=2, d \vec{a}=d x d y \hat{z}, \vec{A} \cdot d \vec{a}=y\left(z^{2}-3\right) d x d y=y d x d y$, so $\int \vec{A} \cdot d \vec{a}=\int_{0}^{2} d x \int_{0}^{2} y d y=4$

Evidently the total flux is

$$
\int_{\text {surface }}^{\vec{A}} \cdot \overrightarrow{d a}=16+0+12-12+4=20
$$

